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Abstract We describe how convective vertical velocities wc vary in the ‘‘gray zone’’ of horizontal resolu-
tion, using both hydrostatic and nonhydrostatic versions of GFDL’s FV3 dynamical core, as well as analytical
solutions to the equations of motion. We derive a simple criterion (based on parcel geometries) for a model
to resolve convection, and find that Oð100 mÞ resolution can be required for convergence of wc . We also
find, both numerically and analytically, that hydrostatic systems overestimate wc , by a factor of 2–3 in the
convection-resolving regime. This overestimation is simply understood in terms of the ‘‘effective buoyancy
pressure’’ of Jeevanjee and Romps (2015, 2016).

1. Introduction

As computer power increases, so does the maximum resolution of atmospheric models. Indeed, it is now
possible to run global climate simulations at subdegree horizontal resolution (Noda et al., 2014; Wehner
et al., 2014), and shorter-term numerical weather prediction simulations at Oð1kmÞ resolution (Kain et al.,
2008; Lean et al., 2008; VandenBerg et al., 2014). Such resolutions lie outside both the hydrostatic regime,
wherein resolved-scale convective vertical velocities wc are negligible, as well as the convection-resolving
regime, wherein wc converge to constant, realistic values.

This no-man’s land of horizontal resolution is sometimes known as the ‘‘gray zone’’ (Figure 1). In the gray
zone, the vertical transports of heat, moisture, and other tracers by the resolved-scale motion can be neither
neglected nor relied upon, and are expected to vary strongly as a function of resolution. Indeed, the struc-
ture of atmospheric circulations at a variety of scales, as well as the utility of convective parameterizations,
are known to vary significantly within the gray zone (Prein, 2015; Wehner et al., 2014; Weisman et al., 1997,
hereafter W97). This raises difficult and important questions about when to turn convective parameteriza-
tions off, and/or how to make them ‘‘scale-aware.’’ Since these issues are all tied to wc , and since wc is rele-
vant for both climate forcing and sensitivity (Donner et al., 2016), it seems worthwhile to address some
basic questions about the behavior of wc in the gray zone:

1. For a given dynamical phenomenon, at what resolution should one expect the associated wc to con-
verge? In other words, where is the inner edge of the gray zone?

2. If wc converges at fine resolutions and is negligible at coarse resolutions, what kind of curve interpolates
between these two regimes?

3. If hydrostatic models are used in the gray zone, how might their behavior differ from their nonhydro-
static counterparts, and how can we understand such differences?

Questions 1 and 2 are depicted schematically by the question marks in Figure 1.

This paper seeks to address these questions through both analytical solutions to the relevant equations of
motion as well as cloud-resolving numerical simulations, run with an atmospheric model equipped with both
hydrostatic and nonhydrostatic solvers. Of course, similar approaches have been taken by previous authors
(W97; Kato & Saito, 1995; Morrison, 2016b; Orlanski, 1981; Pauluis & Garner, 2006), so we must build on these
prior studies in meaningful ways. We do so by first taking advantage of the aforementioned computer power
to explore much finer resolutions (dx�100 m) than these previous studies (dx�2 km), ideally probing down
to the inner edge of the gray zone. Second, we use a postprocessing algorithm to diagnose the diameter D
and vertical extent (or height) H of individual convecting parcels in our simulations, to explicitly make the con-
nection between parcel geometry and resolution. Third, we apply the recently developed ‘‘effective buoyancy’’
formalism (Davies-Jones, 2003; Jeevanjee & Romps, 2015) to develop scaling laws for both hydrostatic and
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nonhydrostatic vertical velocities, and we compare these to previ-
ously published scalings. Finally, we will reemphasize the perhaps
counterintuitive fact that hydrostatic systems overestimate wc . This
fact is noted in the references listed above, but perhaps deserves
fresh emphasis as computer power allows global hydrostatic models
to be run in the gray zone. We will also give intuition for this overesti-
mation using the ‘‘buoyancy pressure’’ framework of Jeevanjee and
Romps (2015, 2016; hereafter JR15 and JR16, respectively).

Our focus here will be on the effects of horizontal resolution on parcel
aspect ratio D/H and hence vertical acceleration, as opposed to the
effects of horizontal resolution on turbulence and entrainment (e.g.,
Bryan et al., 2003; Bryan & Morrison, 2011; Lebo & Morrison, 2015;
Wyngaard, 2004). These effects are likely related, though, as Lebo and
Morrison (2015) find that the onset of resolved turbulent mixing and
the convergence of vertical motion coincide at dx5250 m. This gives a
tentative answer to question 1 above, but the answer is purely empiri-
cal. A further aim of this paper will be to develop a criterion for resolv-
ing convection which reproduces this result (section 3), and explains it
in terms of other phenomenological parameters of our simulations.

2. Simulations

We begin by probing the gray zone numerically. This task requires an atmospheric model which can run
with both hydrostatic and nonhydrostatic solvers while keeping other model components fixed (such as
the horizontal advection scheme and physics parameterizations). To that end, we employ a dynamical core
with just such a capability, GFDL’s FV3 (Finite-Volume Cubed-Sphere Dynamical Core) (Harris & Lin, 2013;
Lin, 2004). Global nonhydrostatic convection-allowing simulations with FV3-based models have been done
for some time, with both GFDL’s HiRAM (https://www.gfdl.noaa.gov/visualizations-mesoscale-dynamics/)
and NASA GEOS (Putman & Suarez, 2011), but this paper marks the debut of FV3 in subkilometer, doubly
periodic cloud-resolving simulations. We will confirm its suitability for this application below.

As for the model configuration and physics, our guiding principle is to avoid inessential complexity insofar
as possible (Jeevanjee et al., 2017). Thus, we choose to run simple doubly periodic radiative-convective
equilibrium (RCE) simulations over a fixed sea surface temperature of 300 K, using bulk aerodynamic surface
fluxes with a fixed drag coefficient of 1:531023, along with an imposed gustiness of 5 m/s to obtain the
small air-sea temperature difference typical of the tropics. Radiative cooling is noninteractive and fixed at
1 K/d between the surface and 150 hPa, above which temperatures are relaxed to a stratospheric target of
200 K over a timescale of 5 days. Above 100 hPa, we introduce a Rayleigh drag on the horizontal winds with
a 1/2 day timescale to act as a sponge for upwelling gravity waves. No boundary layer or subgrid turbulence
schemes are used, though small amounts of vorticity and divergence damping are used to stabilize the
model and reduce noise. Microphysical transformations are performed by the six-category GFDL microphys-
ics scheme (Chen & Lin, 2013). The vertical discretization is Lagrangian (Lin, 2004) with 151 levels, with spac-
ings ranging smoothly from 4 hPa near the surface to 8 hPa in the midtroposphere, and back down to 4
hPa near the model top at 76 hPa. The horizontal grid has 96 points in both x and y.

Simulations were run at resolutions spanning dx 5 0.0625 – 16 km, varying by factors of two, in both hydro-
static and nonhydrostatic mode. We initially spun up a nonhydrostatic dx 5 2 km simulation for 480 days to
attain full equilibration (i.e., no discernible temperatures or moisture trends) throughout the whole domain
(including the stratosphere), and then branched all other runs off this run, running for at least 60 days to
allow adjustment to different resolutions or the hydrostatic solver. Three-dimensional snapshots were saved
daily from these runs, and the last 20 days of such output were fed into an algorithm which identified con-
vecting parcels and diagnosed their diameter D, height H, and vertical velocity wc . The algorithm identifies
parcels as maxima in w, then identifies the associated maxima in Archimedean buoyancy B, and then identi-
fies parcel dimensions D and H via a B threshold (see Appendix C for details). Averaging over all tracked
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Figure 1. Schematic depiction of the gray zone. At some unknown fine resolu-
tion, we expect convective vertical velocities wc to converge to a realistic typical
value, and at very coarse resolution we expect wc to become negligible, but it
is unclear how to interpolate between these two regimes.
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parcels then yields characteristic values of D, H, and wc for a given simulation, which are used in our analysis
below.

To get a feel for these simulations (as well as the diagnostic algorithm), and to show that the FV3 dynamical
core and GFDL microphysics can indeed handle the transition from coarser-resolution general circulation
calculations to subkilometer cloud-resolving calculations, x – p slices of vertical velocity w and Archimedean
buoyancy B from our nonhydrostatic, dx 5 0.25 km simulation are shown in Figure 2. (An animation of the
cloud field is given in Movie S1.) The features in these fields seem reasonable, being comparable to those
found in simulations we have run with other cloud-resolving models, such as DAM (Romps, 2008, not
shown). The slice in Figure 2 contains several parcels that were identified by the diagnostic algorithm, and
their diagnosed horizontal and vertical extents are depicted by black boxes drawn around the parcels
(some parcels have their B maxima in adjacent x – p slices and so do not appear perfectly centered within
their box). Note that parcel w fields typically have a significantly larger vertical extent than their B fields, and
that neither of these fields extend down to the ground, contravening the simple ‘‘plume’’ picture of convec-
tion prevalent in convective parameterizations (e.g., Arakawa & Schubert, 1974).

3. Criterion for the Convection-Resolving Regime

We begin our analysis by addressing the first question from the introduction, namely: where is the inner
edge of the gray zone? To answer this, we must first define the gray zone (for a given model configuration).
We define it here, somewhat loosely, to be those horizontal resolutions at which a model’s convective
parameterizations might be credibly turned off, but at which resolved-scale convection is still grid-limited, in
the sense that the physical size of convecting parcels is not independent of dx, but rather scales directly
with it. Thus, in the gray zone the diameter D of convecting parcels varies as

D5ngray dx ; ðgray zoneÞ (1)

for fixed ngray. This is, of course, merely a definition; we must check whether a gray zone defined this way,
with a corresponding ngray, exists for our simulations. This is done in Figure 3a, which plots the average par-
cel width (measured in grid cells) n � D=dx for both our hydrostatic and nonhydrostatic simulations. This
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Figure 2. x – p slices of vertical velocity and Archimedean buoyancy from our nonhydrostatic, dx 5 0.25 km simulation. This slice contains several parcels that
were identified by the algorithm, and the diagnosed horizontal and vertical extent of the parcels are depicted via black boxes (some parcels have their B maxima
in adjacent x – p slices and so do not appear perfectly centered within their box). Note that the parcel extent is defined by the B field, not the w field, which typi-
cally has a larger vertical extent than the B field. Only part of the full x – p domain is shown. nx denotes grid cell number in the x-direction.

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001059

JEEVANJEE VERTICAL VELOCITY IN THE GRAY ZONE 2306



plot shows that such a gray zone indeed exists for dx> 250 m, where n5ngray � 2, and that n > ngray for
dx�250 m.

Why does the gray zone end at dx � 250 m? In the convection-resolving regime we have

D > ngray dx ; ðconvection2resolvingÞ (2)

which is just another way of saying that convection is no longer grid-limited. In the convection-resolving
regime, we also expect that

D=H � 1 ðconvection2resolvingÞ (3)

since recent high-resolution simulations as well as older observations show that convecting parcels resem-
ble spherical ‘‘thermals’’ (Hernandez-Deckers & Sherwood, 2016; Romps & Charn, 2015; Scorer, 1957; Wood-
ward, 1959). This is confirmed in Figure 3c, which plots average parcel aspect ratio (where D/H is computed
individually for each parcel before averaging) and shows that D=H � 1 at high resolutions (it is unclear why
D/H is closer to 0.5 at dx 5 0.0625 km for the hydrostatic simulation, though it may be related to the asym-
metry between vertical and horizontal motion discussed in section 5). Putting facts (2) and (3) together
yields the following inequality for the convection-resolving regime, which also demarcates the inner edge
of the gray zone:

dx < H=ngray : ðconvection2resolvingÞ (4)

This simple inequality provides a tentative answer to question 1 posed in the introduction. To evaluate it,
we need to know the vertical extent H of our parcels. This is plotted in Figure 3b, which shows that H has
some resolution dependence, but asymptotes to roughly 500 m at fine resolution. Plugging H5500 m and
ngray52 into equation (4) yields dx5250 m for the inner edge of the gray zone, in good agreement with
Figure 3a as well as Lebo and Morrison (2015).

Equation (4) thus seems to capture the edge of the gray zone, as we have defined it. But, this equation is
only relevant to the questions posed in the introduction and by Figure 1 if parcel vertical velocities wc con-
verge according to the same criterion. We thus plot average parcel wc for our simulations in Figure 4. This
plot shows that for the nonhydrostatic solver, wc indeed converges around dx5250 m, in agreement with
Equation (4). Note that in the convection-resolving regime of dx�250 m we expect more turbulence with
higher resolution, but the small variations of wc in this regime suggest that the impact of this on vertical
velocities is not strong.

While the convergence of wc at the resolution predicted by (4) is reassuring, the much more striking feature
of Figure 4 is the overestimation of wc by the hydrostatic solver, by a factor of 2–3 in the convection-
resolving regime (see also W97). We also still lack understanding about the overall shape of the
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Figure 3. Average parcel properties, diagnosed using the algorithm discussed in Appendix C, as a function of resolution dx, for both hydrostatic and nonhydro-
static RCE simulations. (a) Parcel diameter measured in number of grid cells, n5D=dx. This is fairly constant at ngray � 2 for dx> 250 m, and starts to increase for d
x�250 m, marking the inner edge of the gray zone. (b) Parcel height H, which is fairly constant at roughly 500 m for dx�250 m. (c) Aspect ratio D/H, which reaches
the neighborhood of �1 around dx50:125 km.
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nonhydrostatic wc curve and how it interpolates between the
hydrostatic (D=H� 1) and convection-resolving (D=H � 1) limit. We
investigate these questions analytically in the next section.

4. The Shape of wcðdxÞ
4.1. Hydrostatic and Nonhydrostatic Effective Buoyancy
To understand the shape of wcðdxÞ, we must understand the
resolution-dependence of the forces that act on convecting parcels.
Since convection is by definition a buoyancy-driven flow, we will
focus here on the ‘‘effective buoyancy’’ b, defined as (JR15)

b � dw
dt

����
u50

: (5)

This definition applies to both hydrostatic and nonhydrostatic sys-
tems, and gives the net vertical acceleration due to density anoma-
lies. By setting the wind field u50, the effective buoyancy neglects
the ‘‘dynamic’’ pressure gradients arising from advection of momen-
tum or inertia (JR15; Markowski & Richardson, 2011, hereafter
MR11). We will return to possible effects of this approximation in
section 6.

The effective buoyancy b is typically understood as a combination of the Archimedean buoyancy B along
with a ‘‘buoyancy perturbation pressure’’ gradient which offsets B (MR11). This offset is almost total when D
=H� 1 (Morrison, 2016a, hereafter M16), which is why global model grid cells typically do not convect effi-
ciently and convection must be parameterized. The perturbation pressure formalism is not well-suited to
analyze hydrostatic systems, however, because the perturbation pressure contains both hydrostatic and
nonhydrostatic components (M16, MR11).

Instead, we employ the formalism of Das (1979), which splits the total pressure into the local hydrostatic
pressure phyd �

Ð1
z qg dz0 and a residual nonhydrostatic pressure pnh. Applying (5) within this formalism to

a nonhydrostatic, Boussinesq fluid with reference density q0 yields the following equation for the nonhydro-
static effective buoyancy bnh (JR16):

2r2bnh52rh
2B : (6)

Here B is given by the usual formula B � gðq02qÞ=q0, and the horizontal Laplacian is (crucially)
rh

2 � @x
21@y

2. We will present intuition for bnh in section 5. Also note that (6) is incomplete without
boundary conditions, which can be derived from boundary conditions on w. In this paper, we assume a sur-
face at z 5 0, at which w � 0, and this implies b � 0 there as well (JR15). We also assume that w (and hence
b) go to 0 as z !1.

What is the analog of equation (6) for a hydrostatic system? In the hydrostatic approximation, we know that
w is given diagnostically from the mass continuity equation by (e.g., Adcroft et al., 2011, Figure 1.17)

w 5 2

ðz

0
dz0 rh � V (7)

where V5ðu; vÞ is the horizontal wind field. Taking the time-derivative of both sides, and applying the non-
rotating hydrostatic momentum equation q0 dV=dt52rhphyd along with (5), gives

bhyd 5

ðz

0
dz0

1
q0
rh

2 phyd : (8)

This is the equation for hydrostatic effective buoyancy. Note that applying @z
2 to equation (8) yields equa-

tion (6), if one neglects the horizontal Laplacian (as is appropriate in the hydrostatic limit).

Equations (6) and (8) only determine b once horizontal density anomalies or an Archimedean buoyancy
field are specified, so we now specify this source field. This source field should have not only a characteristic

Figure 4. Convective vertical velocities wc as a function of resolution dx, for
both hydrostatic and nonhydrostatic RCE simulations. Note that wc values
appear to converge for dx�250 m, roughly consistent with equation (4). Note
also that the hydrostatic solver indeed overestimates wc, by a factor of about 2–
3 for dx�250 m.
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Archimedean buoyancy B0 and characteristic width D, but also a characteristic height H, since it is only in
relation to H that D gets large (for an atmospheric model, H is bounded by the roughly 10 km height of the
troposphere, whereas D can easily be an order of magnitude larger). Since we will be interested in parcels
for which D may be comparable to their height above the surface (in which case they will feel the effects of
the surface boundary condition, JR16), and since the diagnostic equation (8) only makes sense in the pres-
ence of a lower boundary, we place our source field directly above the surface. Finally, for simultaneous
tractability of both equations (6) and (8), we take the source field to be doubly periodic in both x and y. Put-
ting these specifications together gives the Archimedean buoyancy source field

B5

0 z > H

B0cos
px
D

� �
cos

py
D

� �
z < H

:

8>><
>>:

(9)

The resulting effective buoyancy fields bhydðxÞ and bnhðxÞ will also be doubly periodic, and what we seek
are their amplitudes bhyd and bnh, evaluated at z5H=2, as a function of D, H, and B0 (we overload the sym-
bols bhyd and bnh here slightly). These are derived in Appendix A. We find that bhyd and bnh are functions of
D and H only in their ratio D/H, and are given by

bnhðD=HÞ5B0 12
1
2

e
2 pHffiffi

2
p

D 32e2

ffiffi
2
p

pH
D

� �� 	
(10a)

bhydðD=HÞ5B0
3p2

4
H2

D2
: (10b)

As a quick check of these results, one can Taylor-expand (10a) to lowest order in the hydrostatic limit
D=H� 1, and find it exactly equal to (10b). Also note that both expressions in (10) go to 0 in this limit, as
expected. In the D=H! 0 limit bnh approaches B0, also as expected, and bhyd diverges. It is not clear if this
latter behavior should actually be realized in hydrostatic models, however, because once a given phenome-
non is well resolved D ceases to scale with dx, just as we find here (Figure 3a).

4.2. A Scaling for wc

With expressions for b in hand, we now need to relate b to the convective vertical velocity wc . The relation-
ship between these two quantities is not entirely settled, though two paradigms exist. One, known as the
‘‘slippery thermal’’ paradigm (Sherwood et al., 2013), employs the work-energy theorem and assumes that
(effective) buoyancy is the dominant force on convecting parcels. This paradigm relates b and wc as

wc
2=2 5 bDz (11)

where Dz gives the height range over which the effective buoyancy b has acted.

The other paradigm, known as the ‘‘sticky thermal’’ paradigm (Romps & Charn, 2015), says that convecting
parcels usually rise at a terminal velocity determined by a balance between (effective) buoyancy and drag:

qCd Awc
2=25qVb (12)

where Cd is a drag coefficient, A is the horizontal area of the parcel, and V its volume.

Though these two paradigms are not physically consistent, they are equivalent for our purposes, in that both
equations (11) and (12) imply that wc �

ffiffiffi
b
p

. If we now define wc0 as the limit of nonhydrostatic wc as D=H! 0,
and recall that bnh ! B0 in this limit, we then obtain the following scaling law for wc as a function of D/H:

wc

wc0
5

ffiffiffiffiffiffiffiffiffiffi
b=B0

p
: (13)

Here, b is evaluated using equations (10a) and (10b), and the resulting scalings are plotted in Figure 5. The
nonhydrostatic curve interpolates from the convection-resolving regime (D=H�1) through the gray zone to
the hydrostatic regime (D=H� 1), where the hydrostatic and nonhydrostatic solutions agree. These two
curves also bear a qualitative similarity to the simulated wcðdxÞ in Figure 4. We can test the qualitative accu-
racy of equation (13) by plotting the simulated wc=wc0 against the corresponding D/H, as shown by the
stars in Figure 5. (For the simulations, wc0 is determined by a least-squares fit of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bnh=B0

p
to the
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nonhydrostatic wc .) The nonhydrostatic scaling does a good job
overall of capturing the simulated wcðD=HÞ, while the hydrostatic
scaling is an overestimate but roughly captures the factor of 2–3 dis-
crepancy in the convection-resolved regime found in Figure 4.
These scalings perform comparably to previously published scaling
laws, as shown in Appendix B.

5. Intuition for bhyd>bnh

The scalings plotted in Figure 5 seem to roughly capture the simu-
lated overestimation of vertical velocities by the hydrostatic solver.
But, why does this overestimation occur? Why should the hydrostatic
approximation, in which b is actually neglected in the vertical momen-
tum equation, overestimate b? Note that it is possible to have bhyd > B
(Figure 5), so this overestimation cannot be explained by assuming
that the hydrostatic approximation neglects the buoyancy perturbation
pressure (which it does not, since the buoyancy perturbation pressure
has both hydrostatic and nonhydrostatic components).

To proceed we turn to the ‘‘effective buoyancy pressure,’’ which was
defined in JR15 as simply the nonhydrostatic pressure field that
results when u50:

pb � pnhju50 (14)

(note the analogy to equation (5)). From this it can be shown (JR15) that pb obeys the equation

2r2pb5rh
2phyd ; (15)

which just says that 2rpb must generate a mass divergence which cancels that from 2rhphyd, which is
the only gravitational term in the momentum equation in this formalism. By taking 2@z of equation (15)
and comparing to (6), it is straightforward to show that

bnh52ð@z pbÞ=q0 ; (16)

i.e., the nonhydrostatic effective buoyancy is simply the vertical gradient of the effective buoyancy pressure.
Note that pb was dubbed the ‘‘buoyancy pressure’’: in JR15, but we refer to it here as the ‘‘effective buoy-
ancy pressure’’ to help distinguish it from the buoyancy perturbation pressure mentioned above.

Some intuition for equations (15) and (16) is given in the right plot of Figure 6, as follows: a positively buoy-
ant parcel produces an anomalous hydrostatic pressure field p0hyd < 0, whose horizontal gradients force

1
2

3

D/H

w
c

w
c0

0.1 1 10 100

βnh B0

βhyd B0

FV3 nh
FV3 hyd

Figure 5. Plots of wc=wc05
ffiffiffiffiffiffiffiffiffiffi
b=B0

p
, where b as a function of D/H is given by

equation (10). The nonhydrostatic curve interpolates from the convection-
resolving regime (D=H � 1) through the gray zone to the hydrostatic regime
(D=H� 1), where the hydrostatic and nonhydrostatic solutions agree. Also
shown are the simulated wc=wc0, plotted against the diagnosed D/H (wc0 is
determined by a least-squares fit of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bnh=B0

p
to the nonhydrostatic wc points).

The nonhydrostatic scaling does a good job overall of capturing the simulated
wcðD=HÞ, while the hydrostatic scaling is somewhat of an overestimate. Note,
however, that the hydrostatic scalings and simulations both overestimate their
hydrostatic counterparts by a factor of 2–3 for D=H�1.

Figure 6. Cartoon of how density-driven vertical accelerations are generated in both the nonhydrostatic and hydrostatic equations of motion (right and left plots,
respectively). In the nonhydrostatic formulation the vertical acceleration bnh need only compensate for the net horizontal convergence between 2rhpb and
2rhphyd, whereas in the hydrostatic approximation bhyd must compensate for the gross convergence from 2rhphyd, with no offset from 2rhpb . Thus,
bhyd > bnh.
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mass convergence into the parcel. This convergence must be compensated for by gradients of the counter-
vailing nonhydrostatic effective buoyancy pressure pb. Figure 6 shows that for a surface parcel, pb responds
to horizontal convergence from 2rhphyd by generating both horizontal and vertical divergence to com-
pensate, and the vertical divergence is given essentially by bnh. Although there is no Archimedean buoy-
ancy in this picture, it is not as unfamiliar as it may seem, as this is just the typical way we understand the
operation of a chimney: horizontal phyd gradients force vertical acceleration via mass continuity. Also note
that the divergence from bnh needs only to compensate for the net convergence in the horizontal, which
exhibits a partial cancellation between 2rhpb and 2rhphyd.

With this picture of convection in hand, JR16 showed that the vertical length scale over which pb declines
from parcel center scales with D, which explains why b decreases with increasing D/H (a similar explanation
was given in Pauluis & Garner, 2006). Here, we use this picture to understand why bhyd > bnh, by consider-
ing its hydrostatic analog, illustrated in the left plot of Figure 6. In the hydrostatic approximation, nonhydro-
static pressures such as pb are 0, and the vertical acceleration bhyd is then defined by the requirement that
it enforce mass continuity, as in equation (8). In this case, however, bhyd must compensate for the gross con-
vergence from 2rhphyd, with no offset from 2rhpb. It then follows that

bhyd > bnh ;

i.e., that the hydrostatic approximation overestimates vertical accelerations.

The essential reason for this is as follows. In the anelastic or Boussinesq governing equations, mass continuity
is enforced by nonhydrostatic pressure fields, which generate divergence in all dimensions. In the hydrostatic
approximation, on the other hand, mass continuity is enforced by simply demanding that vertical divergence
cancel any horizontal divergence (equation (7)). Thus, in hydrostatic systems the entire burden of mass con-
servation falls on the vertical motion, which is then exaggerated relative to nonhydrostatic vertical motion.

6. Summary and Discussion

We summarize our results as follows:

1. For a model with characteristic parcel height H and gray zone grid cell width ngray, the convection-resolving
regime requires dx < H=ngray. For our FV3 simulations, this translates to dx�250 m (Figures 3 and 4).

2. Hydrostatic solvers seem to overestimate wc by a factor of 2–3 in the convection-resolving regime (Fig-
ure 4), a behavior which is captured by our proxies (Figure 5).

3. This overestimation can be simply understood using the effective buoyancy formalism (Figure 6).

Although the hydrostatic system overestimates wc , it is surprising how fine the resolution can become before
this effect becomes appreciable. Figure 4 shows that differences between hydrostatic and nonhydrostatic solvers
are virtually undetectable at resolutions of dx 5 2 km or coarser. While this number is almost certainly dependent
on one’s model and the phenomena under consideration (W97 put this transition at 8 km rather than 2 km), it
does at least point to the possibility of using hydrostatic models in the gray zone without substantial error.

While it is hoped that the results here provide some guidance for simulating in the gray zone, many ques-
tions and caveats still remain. For instance, although nonhydrostatic wc seems to converge in Figure 4, the
hydrostatic wc does not. While surprising, this is consistent with the fact that D/H is not converged for either
system (Figure 3c), and with the fact that

ffiffiffiffiffiffiffi
bnh

p
is much less sensitive to D/H than

ffiffiffiffiffiffiffiffiffi
bhyd

p
at D=H � 1 (Figure 5).

Further increases in computational power and hence horizontal resolution should allow for a demonstration of
convergence in D/H and hence also wc for hydrostatic systems.

Also, equation (4) appears to explain why dx5250 m marks the inner edge of the gray zone (consistent with
Lebo & Morrison, 2015), but only does so in terms of H and ngray. What sets the values of these numbers?
We find H � 500 m, consistent with some recent studies (Hernandez-Deckers & Sherwood, 2016; Romps &
Charn, 2015), but no established theory for parcel height currently exists. Furthermore, one might expect
ngray to be associated with the overall diffusivity of the dynamical variables, and hence to be highly model-
dependent. Indeed, we were able to increase ngray in FV3 by a factor of 2–3 by simply increasing the diver-
gence damping, which is a (hyper)-diffusion acting only on the divergent component of the flow (Zhao
et al., 2012). Thus, while equation (4) may be diagnostically accurate, its predictive power may be limited by
the need to diagnose H and ngray for a given set of simulations.
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Questions also remain regarding our simple scaling (13). This simple scaling ignores factors besides b which
may change with resolution. For instance, attempts to fit wc data from individual nonhydrostatic simulations to
the ‘‘sticky’’ thermal model (12) yielded drag coefficients Cd which varied by over an order of magnitude across
our resolution range. These drag coefficients may be a manifestation of the dynamic pressure force, whose reso-
lution dependence we have neglected. Such variations in Cd do not render our scaling useless, but they do intro-
duce error and hence limit the scaling’s accuracy. Do such variations represent a real resolution-dependence of
drag, or rather inaccuracies of the sticky thermal paradigm? Further work is needed to settle such questions.

Appendix A: Derivation of Analytical Solutions for b

We seek here solutions to equations (6) and (8) for the source B field (9).

We begin with the hydrostatic case. The phyd field associated with (9) for z<H is given by

phydðxÞ5
ð1

z
q0g dz0 2 q0B0ðH2zÞcos

px
D

� �
cos

py
D

� �
: (A1)

The hydrostatic effective buoyancy bhyd can be obtained by direct substitution of (A1) into equation (8) and
integration. The result is

bhydðxÞ5 2p2B0
zH
D2

12
z

2H

� �
cos

px
D

� �
cos

py
D

� �
: (A2)

To obtain the nonhydrostatic bnh, we make the ansatz

bnhðxÞ5 ~bðzÞcos
px
D

� �
cos

py
D

� �

and substitute into (6) to obtain

2@z
2~b 1

2p2

D2
~b5

0 z > H

2p2

D2
B0 z < H

:

8>>><
>>>:

(A3)

(A3) This is a second-order, constant coefficient, linear ordinary differential equation which is amenable to
solution by standard textbook methods (which include invoking continuity of b and @zb at z 5 H, which can
be derived from (6)). The result for ~b is

~bðzÞ5

B0 cosh

ffiffiffi
2
p

pH
D

� �
21

� 	
e2
ffiffi
2
p

pz
D z > H

B0 12e2
ffiffi
2
p

pH
D

� �
sinh

ffiffiffi
2
p

pz
D

� �
2 cosh

ffiffiffi
2
p

pz
D

� �
1 1

� 	
z < H

:

8>>>>><
>>>>>:

(A4)

With these solutions to equations (6) and (8) in hand, we now evaluate them at cylinder’s center x5ð0; 0;H=2Þ
to obtain characteristic values for bnh and bhyd as a function of B0, D, and H:

bnh5B0 12
1
2

e2 pHffiffi
2
p

D 32e2
ffiffi
2
p

pH
D

� �� 	

bhyd5B0
3p2

4
H2

D2

These are equation (10) in the main text.

Appendix B: Comparison With Other Scalings

Previous authors have developed vertical velocity scalings analogous to ours. We focus here on the scalings
of M16 (equation (27)), Pauluis and Garner (2006) (hereafter PG06, equation 19), and W97 (equation (4)),
which in our notation are
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M16 :
wc

wc0
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11D2=4H2

p

PG06 :
wc

wc0
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11D=H

p (B1)

W97 :
wc

wc0
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11D2=H2

p :

Here we have set the a parameter of M16 equal to 1=
ffiffiffi
2
p

(right in the 0.5–1 range used in Morrison
(2016b)). All three of these studies point out that the ‘‘1’’ in the denominator in their expressions comes
from nonhydrostatic effects, so hydrostatic versions of these expressions can be obtained by simply omit-
ting this ‘‘1.’’

The plots of Figure B1 show the analogs of Figure 5, but for the above scalings (we recalculate wc0 for each
plot by least squares fit to the nonhydrostatic data, as in Figure 5). These scalings are qualitatively similar to
each other and to equation (13), and the M16 and W97 scalings bear a particularly close relation to ours as
all three vary as H/D in the hydrostatic limit. The PG06 scaling varies as

ffiffiffiffiffiffiffiffiffi
H=D

p
in this limit, giving it a slightly

different shape that seems to be a poorer match to the FV3 data, for both the hydrostatic and nonhydro-
static cases. The W97 scaling slightly underestimates wc throughout the gray zone but does well in captur-
ing the hydrostatic overestimation in the convection-resolving regime, and the M16 scaling does quite well
across the board.

Appendix C: Parcel Diagnostics

To diagnose average values of D, H, and wc across parcels in a given simulation, we devised an algorithm to
automatically detect convecting parcels in 3-D snapshot output and then diagnose these quantities individ-
ually for each parcel. Averaging over parcels within a given simulation then yields the data plotted in Fig-
ures 3, 5, and Figures B1 and C1. This appendix describes this diagnostic algorithm in detail.

For a given run, we analyze daily snapshots from the last 20 days of the run. In a given snapshot, we locate
parcels by finding the global maximum wmax of w. This maximum is discarded if it lies within three grid cells
of the horizontal boundaries (for ease of analysis), or if its pressure is lower than 250 hPa, since such maxima
correspond to tall, rare plumes that are often comprised of multiple distinct parcels which are difficult to
analyze and not representative of typical convecting parcels. If wmax is not discarded we then record its hor-
izontal position ðimax; jmaxÞ, and search for the center of the corresponding density anomaly (typically
located higher than wmax) by maximizing Bðimax; jmax; kÞ in the vertical index k. In searching for this kmax we
exclude boundary-layer points at pressures higher than pbl5950 hPa (to avoid surface-induced buoyancy
maxima), and also exclude stratospheric points at pressure lower than pstrat5150 hPa (to avoid gravity-wave
related buoyancy maxima). To ensure that the buoyancy maximum Bmax at the resulting kmax is indeed asso-
ciated with wmax, we discard parcels where the distance between kmax and wmax is greater than 2000 m.
With Bmax so located, we then impose a ‘‘cloud-core’’ condition of wmax > 0:5 m/s, qnðimax; jmax; kmaxÞ > 13
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Figure B1. As in Figure 5, but for the scalings in equation (B1).
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1025 kg/kg (where qn is nonprecipitating condensate), and Bmax > Bthresh, where the latter is resolution-
dependent and is given by

BthreshðdxÞ50:0110:03
ln ðdx=0:125 kmÞ

ln 64
: ðm=s2Þ (C1)

This gives a factor of 4 increase in Bthresh that is linear in log dx, which is just how the average parcel Bmax

values behave across resolution (not shown). This functional form for Bthresh prevents changes in average
Bmax with resolution from unduly affecting our diagnoses. Any parcel not meeting the cloud-core condition
is discarded.

If not discarded, the parcel is now considered to be based at ðimax; jmax; kmaxÞ, and we diagnose its vertical
extent by marching upwards and downwards from kmax until B < Bthresh. This yields indices ktop and kbot for
parcel top and bottom. We then check that pðktopÞ > pstrat and pðkbotÞ < pbl, and discard the parcel if those
conditions are not met. If they are, we proceed to diagnose the parcel’s height as the sum of grid box
heights from kbot to ktop. We then diagnose parcel diameter by, for each k 2 ½kbot; ktop�, finding the largest
contiguous range of i, including imax, such that Bði; jmax; kÞ > Bthresh. Multiplying the number of i values in
this range by dx then gives an estimate of the parcel’s diameter at level k. This can be repeated for all
k 2 ½kbot; ktop�, as well as by looking at parcel extent in j rather than i. A simple averaging of all these values
then yields the parcel’s diameter D. We set the parcel’s wc5wmax. We then ‘‘erase’’ this parcel from the 3-D
w field by setting wði; j; kÞ5 NA for all k and all i, j within 3 of imax and jmax. We then search for the next
w maxima in this modified w field, and repeat the above processes. This algorithm repeats until 100 w max-
ima in a given snapshot have been identified and either discarded or had their properties fully diagnosed,
or until the number of discarded parcels exceeds 25, whichever comes first. The next snapshot is then proc-
essed in the same manner. This procedure, while crude, is computationally efficient and also suffices to yield
several hundred parcels for each simulation. Average values of all diagnostics for a given simulation are
then computed as simple averages over all parcels from all snapshots.

To get a feel for the statistics of a given simulation, Figure C1 shows scatterplots of wc versus D and wc ver-
sus H for all 621 parcels identified from the nonhydrostatic, 2 km simulation. Note that D has a fairly sym-
metric distribution and an unremarkable spread, whereas H and w are highly skewed, with outliers roughly
an order of magnitude larger than their means (the means of H and wc being 750 m and 2.7 m/s, respec-
tively). Most notably, wc and D appear more or less uncorrelated, whereas there is a strong relationship
between wc and H (R250:77). Though this might be expected from equation (10a), we cannot rule out feed-
backs that elongate parcels which have higher wc (for instance, because higher wc implies higher vertical
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Figure C1. Scatterplots of wc versus (left) D and (right) H for all parcels identified in the nonhydrostatic, dx 5 2 km simula-
tion. Note the relatively large spreads in wc and H, relative to D. Also note the high correlation between wc and H. See
text for further discussion.
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w gradients, and hence possibly more horizontal convergence and entrainment, adding mass and possibly
height to the plume). Thus, the strong correlation between wc and H should not be interpreted as causation
from H to wc , but should rather be regarded as an intriguing relationship worthy of further study.
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